
Generation and Demand Scheduling in a Micro-grid with Battery-based
Storage Systems, Hybrid Renewable Systems and Electric Vehicle

Aggregators

ALVARO ANDRES PEÑA
Universidad Nacional de Colombia

Department of Electrical Engineering
Carrera 30 No. 45-03 Bogota

COLOMBIA
apenaa@unal.edu.co

DAVID FERNANDO ROMERO
Universidad Nacional de Colombia

Department of Electrical Engineering
Carrera 30 No. 45-03 Bogota

COLOMBIA
dfromeroq@unal.edu.co

SERGIO RAUL RIVERA RODRIGUEZ
Universidad Nacional de Colombia

Department of Electrical Engineering
Carrera 30 No. 45-03 Bogota

COLOMBIA
srriverar@unal.edu.co

Abstract: This study presents a proposal for generation scheduling and demand response (electric vehicles in
this study) of an isolated micro-grid. The system has the following elements: battery-based storage systems,
hybrid renewable systems (wind and solar generators with controllable dispatch), traditional generators and electric
vehicle aggregators for demand management. In order to reach economic and reliable operation of the system,
a multi-objective optimization model considering battery life extension, in a side; and energy generation costs,
and recharge price for electric vehicles, on the other side, is established. To address the variability and inherent
stochastic nature of renewables, uncertainty cost functions for the hybrid renewable systems are used through
probability density functions of the available resources. Additionally, in order to allow balancing the uncertainty
and variability of renewable generation, Demand side management (DSM) is introduced into the optimization
problem through controllable resources in the grid like plug-in electric vehicles (PEVs). A coordinated charging
strategy is developed for PEVs through aggregators to obtain the most economic power dispatch scheme and
the lowest charging price. The optimal set of operation parameters of the micro-grid is obtained using the Non-
Dominated Sorting Genetic Algorithm-II (NSGA-II). Results show that the proposed methodology is useful to
obtain a market environment able to handle the scheduling of generation resources and operation parameters of the
micro-grid system.

Key–Words: Economic dispatch models, Mathematical modeling, Genetic Algorithms, Solar energy, Uncertainty
cost.

1 Introduction

1.1 Motivation and incitement

In recent years, the increasing demand for energy
and the penetration of renewable energy resources in
the conventional power system has contributed to the
emergence of a new power distribution scheme known
as micro-grid. In this scheme, power generation is
performed through de-centralized energy resources
that are generally located near the load, most of this
resources are based on renewable energy sources like
wind and solar systems.

Micro-grids are most widely employed in areas

where the main utility is not available due to several
reasons. Generally, these areas are supplied by sys-
tems using a combination of diesel generators, renew-
able energy resources, and energy storage [1]. Plug-
In Electric Vehicles (PEVs) have also been gradually
started to be considered as a part of the micro-grid
system [2]. The ever increasing concern for climate
change and the high costs of fuel and transportation
have promoted the employment of alternative energy
as the main source of power generation; however, re-
newable resources are inherently stochastic and inter-
mittent. To effectively take advantage of renewable
energies, it is essential to develop operation strategies
of the micro-grid system in which an optimal combi-
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nation of energy resources meets the energy demand
economically and reliably over a planning horizon.

In this way, micro-grids operators have the need
of scheduling tools of elements like battery-based
storage systems, hybrid renewable systems (wind
and solar generators with controllable dispatch), tra-
ditional generators and electric vehicle aggregators
for demand management. Demand response can be
achieved by actively aggregating the energy demand
of controllable loads such as PEVs, also, PEVs can
be used advantageously as loads or as sources of en-
ergy to actively respond to the energy demand during
a planning horizon. Thus, a market environment will
be possible able to handle the scheduling of genera-
tion resources and operation parameters of the micro-
grid system.

1.2 Literature review

Many authors have researched into the optimal oper-
ation of micro-grids problem. Nejad et al. [1] pro-
posed a particle swarm optimization (PSO) technique
to optimize the operation of a micro-grid involving
wind turbines, micro turbines, and energy storage sys-
tems. In this research work, Monte Carlo simulation
methods were applied to model the uncertainties of re-
newables; a probability distribution function was de-
veloped for all the decision variables. Siano et al.
[2] proposed a multi-objective stochastic problem for
the optimal operation of a micro-grid with thermal
loads; the generation resources were a combination
of conventional and non-conventional generation units
including a combined heat and power plant (CHP)
energy storage systems (both thermal and electrical)
and renewables (Solar Photovoltaic and Wind). The
proposed optimization methodology was based on a
stochastic approach for modelling renewables uncer-
tainties; the problem was solved using the augmented
Epsilon-Constraint technique. The results obtained
were compared against a genetic algorithm proving
satisfactory performance.

Reddy et al. [3] researched into the optimal
scheduling problem of a micro-grid consisting of con-
ventional generators, solar photovoltaic systems, wind
turbines, energy storage systems, and electric vehi-
cles. The optimization problem was solved by us-
ing the hybrid differential evolution and harmony
search (hybrid DE-HS) algorithm, simulation results
demonstrated that the optimum cost of energy may
be achieved by actively employing electric vehicles as
energy sourcing elements. In [4] uncertainty of non-
conventional energy was presented. In this research
work a stochastic method was applied to solve the op-
timal operation problem of a micro-grid with uncer-
tainties. Arevalo et al. [5] presented a research work

in which uncertainty costs were assigned to the power
delivered to the grid by renewable energy resources.
The main contribution of this work was that, by in-
cluding uncertainty costs in the intermittent resources,
the cost function of the traditional scheduling prob-
lem was modified; in this way, the network operators
have a decision tool based on probability distribution
functions of resource availability to include the energy
generated by renewable sources in their dispatch.

A probabilistic unit commitment (UC) model was
developed in [6]; the considered micro-grid comprised
wind turbines, micro turbines, electric vehicles, bat-
tery, and thermal storage units. A particle swarm op-
timization algorithm was employed to maximize the
total expected profit of the UC schedule. The results
reveal good performance of the proposed methodol-
ogy. Abedini et al. [7] presented a guaranteed conver-
gence Gaussian-Mutation Particle Swarm Optimiza-
tion (GM-PSO) technique to solve the optimal man-
agement strategy problem for an autonomous micro-
grid with wind turbines solar photovoltaic systems,
and diesel generators. The results demonstrated that
the hybrid battery-diesel design of systems with re-
newable energy sources is more efficient than the ex-
clusive use of batteries or diesel generators.

Lifetime optimization of battery energy storage
systems was researched by Das et al. [8]. In [9]
an economic operation model of isolated micro-girds
with micro gas turbines, wind turbines, heat pump,
and battery-based energy storage system was pre-
sented. Fuel cell and battery integration alongside
wind turbines and solar photovoltaic generators were
studied in [10]. An optimal scheduling strategy was
presented in [11] considering islanding operation con-
straints.

Moga et al. [12] researched into an optimization
model based on the day-ahead forecasted power of
non-controllable load. Additionally, a weather fore-
cast was included to determine the solar energy avail-
able. The main purpose of the optimization model was
to optimize the operation of three non-conventional
sources (biogas, solar photovoltaic, and geothermal).
An experimental test equipment with smart metering
instruments was introduced to validate the model. Op-
timal day-ahead scheduling was presented by Zhang
et al. [13] for a micro-grid system with wind turbines.
The environmental economic dispatch of a micro-grid
was solved by using cuckoo search algorithm (CSA)
in [14], the results obtained from this method are com-
pared with those obtained using a particle swarm op-
timizer; this method, yield better results. Trifkovic
et al. [15] presented a parametric programming ap-
proach for the management of energy in micro-grids.
In [16] an optimal operation planning for and isolated
micro-grid with photovoltaic generators, wind tur-
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bines diesel generators, and batteries was presented.
Stochastic economic load dispatch (SELD) for micro-
grids was researched in [17]. The work presented in
[18] employed a Non-Dominated Sorting Genetic Al-
gorithm II (NSGA-II) to solve the optimal power al-
location for storage batteries and diesel generators by
means of the overall deliberation of the environmental
and economic benefits of the system operation.

Rabiee et al. [19] presented a methodology in
which the operation costs and emission of a micro-
grid was minimized by optimal scheduling of elec-
tric vehicles and receptive loads. The results obtained
proved that by means of integrating electric vehicles
and reactive loads in the micro-grid an economic and
environmental friendly operation of the micro-grid
can be achieved. The table 1 shows the considera-
tions of the previous work for operation scheduling in
microgrids.

Table 1: Considerations of Scheduling Approaches

Considerations References
Demand Response [1], [4], [5], [19]
Dynamic Voltage [2]
Heuristic Optimiza-
tion

[3], [7], [10], [13],
[14], [15]

Stochastic optimiza-
tion

[2], [4], [5], [17]

Robust optimization [2], [8]
Energy Storage Sys-
tems

[5], [6], [8], [18]

Temperature Con-
trol Devices

[9]

Islanding capability [10], [11], [16]

1.3 Contribution and paper organization

The proposal of this work builds upon previously
published research [1]-[19]; however, the main con-
tribution of this research work is a methodology to
successfully handle the inherent variability of energy
generation through renewables by means of probabil-
ity density and uncertainty costs functions while si-
multaneously extending battery lifetime and integrat-
ing controllable loads (such as PEVs) to the system.
This makes it possible to a small extent, to achieve
demand-side management. On the other hand, PEVs
aggregation was not previously considered in the pub-
lished research [1]-[19].

In this paper the NSGA-II algorithm is employed
to find the optimal operation parameters of an iso-
lated micro-grid. It is used as test bed a real micro-
grid in the Dong-fushan island in China. The consid-
ered micro-grid consists of wind turbines, solar photo-
voltaic panels, diesel generators, battery, and a small
population of PEVs. The multi-objective optimization

problem focuses mainly on reducing the energy gen-
eration costs of the system including the costs of the
energy required to recharge the PEVs. The second op-
timization objective is to extend the battery lifetime;
this of course also has economic implications.

This paper is organized as follows. Section II
presents the multi-objective optimization problem for-
mulation and introduces the probability density func-
tions to address renewables stochasticity; this sec-
tion also presents a brief overview of the coordinated
charge strategy of the PEVs. Section III describes
the background of the test bed micro-grid system and
its main components; additionally, presents a con-
cise description of the NSGA-II genetic algorithm em-
ployed to solve the optimization problem. Section IV
presents the obtained results and a discussion. Section
V presents the conclusions.

2 Problem Formulation

Given the multi-objective nature of the problem, two
optimization objectives can be identified:

• The cost minimization of energy generation us-
ing conventional and controllable renewable gen-
erators as well as the minimization of the en-
ergy costs to recharge Plug-In electric vehicles
through demand response.

• The minimization of battery life loss. This objec-
tive is also economic, as the battery life extension
represents a reduction in the cost of investment to
replace the battery given its premature exhaus-
tion.

Achieving the optimal scheduling of the micro-
grid energy resources to meet the energy demand in
real time is a must. However, the previous optimiza-
tion objectives are to be reached while operating under
the system constraints.

2.1 Cost of Generation with Conventional
Generators

Traditionally, the cost function of a conventional gen-
erator can be modelled with a second-order polynomic
cost function [20]-[21] that is closely related to the
fuel cost function:

Ci(Pgi) = aiPgi
2 + biPgi + ci (1)

Where: ai, bi and c are coefficients associated to
the characteristics of each generator and ei and fi are
fuel costs coefficients for the i − th generator. Given
this, the total generation cost for a system withN con-
ventional units is:
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Cconv =

N∑
i=1

(aiPgi
2 + biPgi + ci) (2)

In this way, a cost function for conventional gen-
erators is introduced analytically. Given that this cost
function is a polynomial function, the optimization of
the programming of conventional generation units in
the dispatch of energy can be performed through con-
ventional methods such as the Newton method [22],
the gradient method [23], the gradient projection al-
gorithm [24], quadratic programming [25]-[27], the
decomposition technique [28], and approximations by
MacLaurin series [29]-[30].

2.2 Cost of Generation with Hybrid Renew-
ables

In this study a hybrid renewable is a wind or solar
system able to be dispatchable. In order to reach this
controllability, it is considered that the system has a
back-up unit (normally a energy storage system) able
to inject power in case of lack of resources or to charge
in case of abundancy [31]-[33]. For including this be-
haviour in the problem target function, we propose to
use uncertainty cost functions for solar and wind sys-
tems [5], [20].

2.2.1 Uncertainty Costs

Given the uncertainty of the power generated using
renewable energies, the model that includes these re-
sources in the energy dispatch must include a term
to consider such uncertainty. Penalty costs are an
addition to operative costs of energy generation. In
a power system for a generation unit the scheduled
power Ws,i and the available Wav,i power are under
or over-estimated such that [5], [20]:

Ws,i < Wav,i (3)

Or
Ws,i > Wav,i (4)

For each case, a cost function is defined due to the
under or over-estimation of the available power in the
resource.

The cost for overestimating the available power in
a renewable resource is defined by:

Co,i(Ws,i,Wav,i) = co,i(Ws,i −Wav,i) (5)

co,i is a penalization coefficient defined by the system
operator and corresponds to the costs of using the dif-
ference between the dispatch and scheduled power.

Similarly, the underestimation costs are defined
as:

Cu,i(Ws,i,Wav,i) = cu,i(Wav,i −Ws,i) (6)

Uncertainty costs are defined as the expected
value of the penalty functions for under or overesti-
mating the available generation power. The uncer-
tainty costs function (UCF) are obtained by adding the
costs due to over and underestimation of the available
resource.

UCF = Cu,i(Ws,i,Wav,i) + Co,i(Ws,i,Wav,i) (7)

The expected value of the penalty cost for under-
estimating is given by:

E[Cu,i(Ws,i,Wav,i)] =∫ Wmax,i

Ws,i

cu,i(Wav,i −Ws,i)× fW (Wav,i)dWav,i

(8)

fW (Wav,i) is the probability of certain power to
be available on the energy source.
Wmax,i is the maximum power of the i−th generator.

Similarly for the overestimated case:

E[Co,i(Ws,i,Wav,i)] =∫ Ws,i

Wmin,i

co,i(Ws,i −Wav,i)× fW (Wav,i)dWav,i (9)

Wmin,i is the minimum power output of the
i− th generator.

Given the inherent stochastic nature of the energy
generated by renewable resources, a probability den-
sity function is used to determine the availability of
the resource.

2.2.2 Solar Photovoltaic

Solar photovoltaic energy is generated by solar irradi-
ance, which depends heavily on the geographical lo-
cation. The following log-normal probability distri-
bution function is used to obtain the expected value of
the UCF [5], [20]:

fg(G) =
1

Gβ
√

2π
e
−ln(G)−λ2

2β2 , 0 < G <∞ (10)

Where:

• fg(G) is the log-normal probability function.
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• G is the solar irradiance.

• λ is the mean of the log-normal distribution.

• β is the standard deviation of the Log-normal
distribution.

The relationship between solar irradiance and the
power generated by the photovoltaic panel is given by:

WPV (G) =

{
WPV rG

2

GrRc
0 < G < Rc

WPV rG
Gr

G > Rc
(11)

Where:

• WPV (G) is the photovoltaic power generated as
a function of the solar irradiance.

• G is the solar irradiance.

• Gr is the standard ambience irradiance.

• Rc is the reference irradiance.

• WPV r is the nominal output power of the photo-
voltaic cell.

fWPV (WPV ) is a function to obtain the probability of a
determined available power from solar irradiance. In
order to obtain fWPV (WPV ) for both cases in equation
11, the probabilistic variable change theory is used.

• First Condition: 0 < G ≤ Rc

The notation g(G) function is used to represent
WPV , which is the photovoltaic power generated in
terms of G; this is:

WPV (G) = g(G) =
WPV rG

2

GrRc
(12)

Taking the inverse of g:

g−1(WPV ) = ±
√
WPVGrRc
WPV r

(13)

And its derivative:

dg−1(WPV )

dWPV
=

√
GrRc
WPV r

1

2
√
WPV

(14)

Now, applying the variable change, the equation for
solar photovoltaic power is obtained:

fWPV
(WPV ) = fG(g−1(WPV ))

∣∣∣dg−1(WPV )
dWPV

∣∣∣ (15)

Replacing equations (13) and (14) in (15) the fol-
lowing is obtained:

fWPV
(WPV ) =

√
GrRc

WPV rWPV
1
2

[
1

(
√
WPV GrRc)β

√
2π
e
−ln(G)−λ2

2β2

]
(16)

In this case, G = WPV GrRc
WPV r

. This expression is
valid for the following power limits: 0 < WPV <
WPV rRc

Gr
.

• Second Condition: G > Rc

In this case:

WPV (G) = g(G) =
WPV rG

Gr
(17)

The inverse of g is determined by:

g−1(WPV ) =
WPVGr
WPV r

(18)

Similarly, the derivative of g−1 is determined by:

dg−1(WPV )

dWPV
=

Gr
WPV r

(19)

Replacing equations (19) and (20) into (14):

fWPV
(WPV ) =

1(
WPV Gr
WPV r

)
β
√

2π
e
−ln(G)−λ2

2β2
Gr

WPV r

(20)
The expression in (20) is valid for WPV ≥

WPV rRc
Gr

. It is now possible to obtain the penalty costs
due to underestimate or overestimate the power of the
photovoltaic generator replacing equations (16) and
(20) into equations (8) and (9).

2.2.2.1 Penalty cost due to underestimate for
Photovoltaic Generators The uncertainty cost
function related to the penalty cost given the under-
estimate case may be obtained by developing the fol-
lowing integral:

E[CPV ,u,i(WPV ,s,i,WPV ,i)] =

W
PV ,∞,i∫

W
PV ,s,i

cPV ,u,i(WPV ,i −WPV ,s,i) · fWPV
(WPV,i) · dWPV,i

(21)

Where:

• E[CPV ,u,i(WPV ,s,i,WPV ,i)] is the expected
value of the underestimate penalty cost for the
photovoltaic generator.
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• fWPV
(WPV,i) is the probability distribution

function of the power in the i − th photovoltaic
generator.

• cPV ,u,i is the underestimate penalty cost coeffi-
cient for the i− th photovoltaic generator.

• WPV ,∞,i is the maximum power output of the PV
generator i.

• WPV ,s,i is the scheduled power in the i− th pho-
tovoltaic generator.

• WPV ,i is the available power in the i− th gener-
ator.

An output power (WRc), is associated directly
with the irradiance value Rc. in equation (22).

WPV r ·Rc
Gr

= WRc (22)

The integral in (21) is divided into two parts A
and B. After replacing and solving for each case, an
expression for the expected value of the penalty costs
functions can be obtained.

• Condition A: for 0 < WPV,i≤WRc

E[CPV ,u,i(WPV ,s,i,WPV ,i), A] =
(−1)cPV ,u,iWPV ,s,i

2[
erf(

(
1
2 ln(WRcGrRc

WPV r
)− λ

)
√

2β
)− erf(

(
1
2 ln(

W
PV ,s,i

GrRc
WPV r

)− λ
)

√
2β

)

]

+
cPV ,u,iWPV r · e2λ+2β2

2GrRc

[
erf(

(
1
2 ln(WRcGrRc

WPV r
)− λ

)
√

2β
−
√

2β)

− erf(

(
1
2 ln(

W
PV ,s,i

GrRc
WPV r

)− λ
)

√
2β

−
√

2β)

]
(23)

• Condition B: for WPV,i≥WRc

E[CPV ,u,i(WPV ,s,i,WPV ,i), B] =
cPV ,u,iWPV ,s,i

2

[
erf(

(
ln(WRcGr

WPV r
)− λ

)
√

2β
)

− erf(

(
ln(

W
PV ,∞,iGr
WPV r

)− λ
)

√
2β

)
]

+
cPV ,u,iWPV r · eλ+β

2/2

2 ·Gr

[
erf(

(
ln(

W
PV ,∞,iGr
WPV r

)− λ
)

√
2β

− β√
2

)

− erf(

(
ln(WRcGr

WPV r
)− λ

)
√

2β
− β√

2
)

]
(24)

2.2.2.2 Penalty cost due to overestimate for Pho-
tovoltaic Generators The uncertainty cost function
related to the penalty cost given the overestimate case
can be obtained developing the following integral.

E[CPV ,o,i(WPV ,s,i,WPV ,i)] =

=

W
PV ,s,i∫
0

cPV ,o,i(WPV ,s,i −WPV,i)fWPV
(WPV ) · dWPV,i

(25)
Where:

• E[CPV ,o,i(WPV ,s,i,WPV ,i)] is the expected
value of the penalty cost due to overestimate for
PVG case.

• fWPV
(WPV ) is the PDF of the power of the pho-

tovoltaic generator i.

• cPV ,o,i is the penalty cost coefficient due to over-
estimate in the PVG for generator i.

• WPV ,s,i is the scheduled PV power set by ED
model in generator i.

• WPV ,i is the PV available power in the generator
i.

Similarly to equation (21) integral (25) is divided
into two parts:

• Condition A: for 0 < WPV,i ≤WRc

It is possible to obtain the expected penalty cost due
to overestimate in the condition A by replacing (20)
in (25), after solving, the following expression for the
expected penalty cost due to overestimate in condition
A is obtained:

E[CPV ,o,i, (WPV ,s,i,WPV ,i), A] =
−cPV ,o,iWPV ,s,i

2

[
1

+ erf(

(
1
2 ln(WRcGrRc

WPV r
)− λ

)
√

2β
)
]

+
cPV ,o,iWPV r · e2λ+2β2

GrRc2

[
erf(

(
1
2 ln(WRcGrRc

WPV r
)− λ

)
√

2β

−
√

2β) + 1
]

(26)

• Condition B: for WPV,i > WRc

Similarly the expected penalty cost due to overes-
timate in condition B can be obtained replacing (12)
in (25), after solving, the expression for the expected
penalty cost due to overestimate in condition B is ob-
tained:
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E[CPV ,o,i, (WPV ,s,i,WPV ,i), B] =
cPV ,o,iWPV ,s,i

2

[
erf

((
ln(WRcGr

WPV r
)− λ

)
√

2β

)

− erf

((
ln(

W
PV ,s,i

Gr
WPV r

)− λ
)

√
2β

)]

+
cPV ,o,iWPV r · eλ+β

2/2

2 ·Gr

[
erf

((
ln(

W
PV ,s,i

Gr
WPV r

)− λ
)

√
2β

− β√
2

)

− erf

((
ln(WRcGr

WPV r
)− λ

)
√

2β
− β√

2

)]
(27)

By adding equations (23), (24), (26) and (27) it is
possible to get the Uncertainty cost functions for the
photovoltaic generator.

Table 2: Parameters for photovoltaic generators
Parameter Value
Wpvr 20 (W)
Gr 1000 (W/m2)
Rc 150 (W/m2)
Wpv 100 (W)

Some of the parameters for wind generators used
in the problem formulation are summarized in table 2

2.2.3 Wind Power

Wind speed is the main parameter when generating
energy through wind turbines, that for different geo-
graphic locations varies. The probability distribution
for wind speed has been demonstrated to be either a
Weibull or Rayleigh type whose parameters depend
on the geographical location [5], [20].

fv(v) =
v

σ2
e
−v2
2σ2 (28)

Where:

• fv(v) is the probability density function for wind
speed.

• v is the wind speed.

• σ is the geographical related scale factor.

The wind power generation is given by:

Ww(v) =


0, v < vi; v > vo
ρv + κ, vi < v < vr
Wr, vr < v < vo

(29)

Where:

• Ww(v) is the power generated as a function of
wind speed.

• v is the wind speed.

• vi is the lower cut speed of the aero-generator.

• vr is the nominal wind speed of the aero-
generator.

• vo is the upper cut speed of the aero-generator.

• Wr es the nominal output power o the aero-
generator.

Also: ρ = Wr
vr−vi and κ = −Wrvi

vr−vi

• First Condition v ≤ vi or v ≥ vo

In this condition the power generated due to insuf-
ficient wind speed or too much wind speed (leading to
saturation) is 0. From this condition we get:

fw(Ww = 0) = 1− e−(
vi√
2σ

)2
+ e
−( vo√

2σ
)2 (30)

• Second Condition vi < v < vr

The relationship between the wind speed v and
the output power Ww is given by:

Ww(v) = ρv + κ (31)

Based on the probability distribution function of
wind expressed in equation (28) for values in the range
of wind speed for condition B we can get:

fW (0 < Ww < Wr) =
Ww − κ
ρ2σ2

e
−(Ww−κ√

2ρσ
)2 (32)

• Third Condition vr < v < vo

In this case, there is a constant power regardless
of wind speed between vr and vo. The probability
distribution function for wind power can be obtained
by:

fW (Ww = Wr) = e
−( vr√

2σ
)2

+ e
−( vo√

2σ
)2 (33)

It is now possible to obtain the penalty costs due
to underestimate or overestimate the power of the
wind generator replacing equations (30), (32) and (33)
into equations (8) and (9).
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2.2.3.1 Penalty cost due to underestimate for
Wind Generators The uncertainty cost function re-
lated to the penalty cost due to underestimate for wind
generators can be obtained after solving the following
integral:

E[Cw,u,i(Ww,s,i,Ww,i)] =

Wr∫
Ww,s,i

cw,u,i(Ww,i −Ww,s,i) · fW (Ww,i)dWw,i

(34)
Where:

• E[Cw,u,i(Ww,s,i,Ww,i)] is the expected value of
the penalty cost due to underestimation for the
wind generator case.

• fW (Ww,i) is the probability density function of
the power of the i− th wind generator.

• cw,u,i is the penalty cost coefficient due to under-
estimation i− th wind generator.

• Wr is the maximum output power of the i − th
wind generator.

• Ww,s,i is the scheduled power in the i− th wind
generator.

• Ww,i is the available power in the i − th wind
generator.

After solving the integral, an expression for the
expected penalty cost due to underestimation can be
obtained:

E[Cw,u,i(Ww,s,i,Ww,i)] =
cw,u,i

2

(√
2πρσ(erf(

Ww,s,i − κ√
2ρσ

)

− erf(
Wr − κ√

2ρσ
)) + 2(Ww,s,i −Wr)e

−(Wr−κ√
2ρσ

)2
)

+
cw,u,i

2
(e−

V 2
r

2σ2 − e−
V 2
0

2σ2 )(Wr −Ww,s,i)

(35)

2.2.3.2 Penalty cost due to overestimation for
Wind Generators The uncertainty cost function re-
lated to the penalty cost due to overestimate for wind
generators can be obtained after solving the following
integral:

E[Cw,o,i(Ww,s,i,Ww,i)] =

Ww,s,i∫
0

cw,o,i(Ww,s,i −Ww,i)fW (Ww,i)dWw,i

(36)
Where:

• E[Cw,o,i(Ww,s,i,Ww,i)] is the expected value of
the penalty cost due to overestimate for the wind
generator case.

• fW (Ww,i) is the probability density function of
the power of the i− th wind generator.

• cw,o,i is the penalty cost coefficient due to over-
estimate i− th wind generator.

• Ww,s,i is the scheduled power in the i− th wind
generator.

• Ww,i is the available power in the i − th wind
generator.

After solving the integral, an expression for the
expected penalty cost due to overestimate can be ob-
tained:

E[Cw,o,i(Ww,s,i,Ww,i)] = cw,o,iWw,s,i · (1− e−
V 2
i

2σ2 + e−
V 2
0

2σ2

+ e
− κ2

2ρ2σ2 )−
√

2πcw,o,iρσ

2

(
erf(

Ww,s,i − κ√
2ρσ

)

− erf(
−κ√
2ρσ

)
)

(37)
In this way, it is possible to obtain the UCF for

wind generators by adding the equations (35) and
(37).

Table 3: Parameters for wind Generators
Parameter Value

Wr 29.93 (W)
vr 14.47 (m/s)
vi 4 (m/s)
vo 16.03 (m/s)

Some of the parameters for wind generators used
in the problem formulation are summarized in table 3

2.3 Plug-In Electric Vehicles

The cost function for Plug-In Electric Vehicles in this
paper is product of the work presented in [33]. A dis-
tributed charging system is implemented by means of
parking lots with Ni charging ports. Each parking
lot is operated by an ”aggregator.” At each charging
port within the parking lot, the power can be con-
trolled by this aggregator. The energy to charge the
electric vehicles is purchased by the aggregator from
the utility at time-of-use (TOU) rates. A coordinated
charging strategy is developed for discrete time inter-
vals tk = t0 + k∆t, k = 0, 1, ..., where t0 is the
time at which the charging strategy starts and ∆t is
the length of the time interval. Each electric vehicle
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can be charged with a power pni at port ni; A variation
from 0 to the rated power of the charging port Pmax is
possible for each charging port in the parking lot. The
initial State-Of-Charge (SOC) and arrival and depar-
ture behavior of the PEVs are uncertain; however they
can be modelled using porbability distribution func-
tions. When a PEV is connected to the system, the
aggregator instantaneously obtains its battery capacity
Bni and initial SOC (SOCAni ∈ [0, 1]), the customer
informs the expected parking duration Tni and the de-
sired SOC upon departure SOCDni. Using this infor-
mation each aggregator builds a day-ahead forecast of
local base loads. The coordinated charging strategy is
implemented in three main steps:

2.3.1 Charging load boundaries

In this step the aggregated load boundaries are com-
puted per each aggregator. This is achieved by de-
scribing each PEV charging need in terms of its en-
ergy and power boundaries. In any case these bound-
aries must not exceed the rated charging power at any
given charging port. To ensure problem feasibility, the
maximum possible SOC a departure SOCD,ani is com-
puted:

SOCD,ani = min

(
SOCDni , SOC

A
ni +

HniρPmax∆t

Bni

)
(38)

∀ni ∈ Ni, ∀i ∈ I
Where:

• I is the number of parking lots

• Ni is the number of charging ports at parking lot
i ∈ I

• ρ is the charging efficiency

• Hi is the planning horizon of the parking lot

• SOCD,ani is the maximum SOC of the PEV at the
time of depature from chargin port ni

• SOCAni is the initial SOC of the PEV at arrival at
por ni

The upper and lower energy limits for a single
PEV at [tk, tk+Hi−1] can be obtained by:

emaxni (tk+j) = eminni (tk+j) = SOCD,ani Bni ,

j = Hni , ...,Hi,∀ni ∈ Ni,∀i ∈ I (39)

Similarly:

eminni (tk+j) = max
(
eminni (tk+j+1)− ρPmax∆t, SOC

A
niBni

)
j = 0, ...,Hni − 1,∀ni ∈ Ni,∀i ∈ I (40)

Also:

emaxni (tk) = SOCAniBni , ∀ni ∈ Ni, ∀i ∈ I (41)

Finally:

emaxni (tk+j) = min
(
emaxni (tk+j+1)− ρPmax∆t, SOC

D,a
ni Bni

)
(42)

Where:

• emaxni (tk+j) is the energy upper limit for a given
PEV at port ni

• eminni (tk+j) is the energy lower limit for a given
PEV at port ni

It can be seen that equation (39) establishes the energy
state limits for a PEV after its departure. Equation
(40) specifies that the minimum energy state of a given
PEV at time interval (k+j) must be, at most ρPmax∆t

lower than its energy state at (k + j + 1) but cannot
be lower than the state of energy upon its arrival. The
upper limit of the charging power for a single PEV at
[tk, tk+Hi−1] is determined by the rated power of the
charging port, this is:

pmaxni (tk+j) = Pmax, j = 0, ...,Hni−1,∀ni ∈ Ni,∀i ∈ I
(43)

pmaxni (tk+j) is the upper power limit for a single PEV,
it can be as large as the rated power for the i − th
charging port when a PEV is connected or zero other-
wise. Now that power and energy limits for each PEV
in the i − th parking lot are obtained, the aggregated
limits of the parking lot can be obtained:

Emini (tk+j) =
∑
ni∈Ni

eminni (tk+j), j = 0, ...,Hi, ∀i ∈ I

(44)

Emaxi (tk+j) =
∑
ni∈Ni

emaxni (tk+j), j = 0, ...,Hi, ∀i ∈ I

(45)

Pmaxi (tk+j) = min

 ∑
ni∈Ni

pmaxni (tk+j), Aiζi(tk+j)λ


j = 0, ...,Hi − 1,∀i ∈ I (46)

Where:

• Emini (tk+j) is the minimum aggregated energy
at port ni.

• Emaxi (tk+j) is the maximum aggregated energy
at port ni.
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• ζi(tk+j) is the available capacity of the local dis-
tribution transformer that can be used fo supply-
ing energy to the parking lot.

• Ai is the capacity of the local distribution trans-
former.

• λ is the charging power average power factor.

The aim of the charging strategy is to minimize
the energy purchase costs and to achieve peak load
controlling. Time-Of-Use (TOU) costs are summa-
rized in table 4.

Table 4: Costs Per TOU
Hour $/kWh

8.00-12.00 0.138
12.00-17.00 0.109
0.00-8.00 0.058

A model for the coordinated charging strategy can
be introduced as follows:

min
θ,pprefi

J(tk) =
∑
i∈I

H−1∑
j=0

c(tk+j)p
pref
i (tk+j)∆t

+ µ
H−1∑
j=0

θ(t)− κ
H−1∑
j=0

(H − j)pprefi (tk+j) (47)

Subject to:

pprefi (tk+j) ≤ Pmaxi (tk+j), j = 0, . . . ,Hi−1,∀i ∈ I

pprefi (tk+j) = 0, j = Hi, . . . ,H,∀i ∈ I

Emini (tk+j) ≤
J−1∑
τ=0

ρpprefi (tt+τ )∆t+E
max
i (tk) ≤ Emaxi (tk+J ),

J = 1, . . . ,Hi, ∀i ∈ I∑
i∈I

pprefi (tk+j) ≤ AT (tk+j)− Lb(tk+j) + θ(tk+j),

j = 0, . . . ,H − 1

(48)

Where:

• AT (tk+j) is the upper boundary of the load at the
(k + j) time interval.

• Lb(tk+j) is the aggregated load of the primary
transformer at the (k + j) time interval.

• H is the planning horizon.

• c(tk+j) is the TOU price of energy for the aggre-
gators at (k + j) time interval.

• pprefi (tk+j) is the preferred charging load for ag-
gregator i at time interval (k < +j).

• θ(tk+j) is the slack variable used to achieve
problem feasibility.

• µ is a penalty factor for positive slack variables
θ.

• κ is a coefficient related to early charging
preference.

In equation (47) the first term is used to minimize
the cost at which each aggregator purchases electric-
ity from the utility over the planning horizon, θ is a
term introduced to penalize violation to the capacity
limit and ensures problem feasibility, and the term κ
indicates preference for early charging.

The model presented above is related directly to
the number of aggregators and to the planning hori-
zon. However, it does not consider the number of
PEVs connected. The optimization of the energy price
for PEVs is for the price rate at which the aggregator
buys energy from the utility so it can sell the energy to
the users and make profit. From this point of view and
for the scope of this work we will assume that the util-
ity operator and the aggregator are the same, and that
the optimized energy prices are directly transferred to
the users, this assumption is valid in the view that the
studied system is an isolated grid in a small area in
which it makes sense that only one agent acts as en-
ergy generator and distributor.

2.4 Battery-Based Energy Storage

The cost function for Battery-Based Energy Storage
in this paper is product of the work presented in [21].
Battery-based energy storage systems play a major
role in the operation of isolated micro-grids. The strat-
egy to dispatch the energy stored in the batteries can
greatly impact their lifetime; this is of great impor-
tance if one considers the investment that needs to be
made to install and operate such system [21]. At any
given time during the micro-grid operation, the battery
State-Of-Charge (SOC) must remain within a speci-
fied range with the purpose of aim battery lifetime:

SOCmin ≤ SOC ≤ SOCmax (49)

The charge or discharge power of the batteries
must also remain between certain limits:

Pchmax ≤ Pbatt ≤ Pdischmax (50)
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The value of the battery SOC during the time in-
terval t+ ∆t is determined by the instantaneous value
of the SOC in the time t plus the battery power during
the time interval ∆t:

SOCt+δt = SOCt −
Pbat−t∆t

Cbat
(51)

Pbat−t is the battery power between t and t+ ∆t and
Cbat is the battery capacity measured in Ah. Several
studies have demonstrated that operating batteries at a
high SOC may help extend its lifetime [31]-[33]. The
objective is to keep the batteries operating at a high
SOC.

2.4.1 Costs of Lifetime Loss

The level of ageing of a battery can be measured by
means of the battery capacity to store charge with re-
spect to its capacity when it was new:

Lloss =
Qt
Qn

(52)

Where Qt is the charge that the battery is able to
store at instant t and Qn is the nominal battery capac-
ity when it was new. The costs function of the battery
lifetime loss is related to the percentage of lifetime
loss of the battery and the initial cost of investment in
the battery-based energy storage system:

Cbatt = LlossCbatt0 (53)

Where Cbatt is the battery loss of lifetime cost
and Cbatt0 is the total initial investment cost to pur-
chase the battery-based energy storage system. So, for
a system with Nbatt battery-based energy storage sys-
tems, the aggregated cost function of battery loss of
lifetime is given by:

Cbatt =

Nbatt∑
n=1

Cbatti (54)

Some of the battery parameters for the operation
strategy are summarized in table 5

Table 5: Battery Operation Parameters
Name Parameter Value
SOCmin Minimun SOC 0.5
SOCmax Maximum SOC 0.95
SOCi Initial SOC 0.6
Q Ah of the Battery 1000 Ah

The associated costs for each resource in the
micro-grid is summarized in table 6

Table 6: Energy price per resource per kWh
Resource Price (USD/kWh)

Diesel 0.8
Batteries 180

Solar 0.0803
Wind 0.130

In this way, section 2.1, 2.2 and 2.3 correspond to
the first optimization objective and section 2.4 corre-
sponds to the second optimization objective.

3 Test Bed Background and Multi-
Objective Solution Algorithm

3.1 Test Bed Micro-grid

The Dongji islands are a group of small islands lo-
cated in the far east of China, in the Zhoushan
archipelago [21]. The Dong-fushan island is the far-
thest inhabited island from the group. Up until re-
cently, the main source for electricity generation in
the island was based on polluting sources like diesel.
Given the high costs and diffculty of transportation of
the diesel fuel, the electricity supply was limited to
short periods of availability. In September 2010, the
Dong-fushan micro-grid system project started. The
main objective of the project was to exploit the poten-
tial benefits from renewable resources in the island.
The project was completed in April 2011 and has been
operating since [21]. The proposed system included
a water desalination plant, to address the water sup-
ply problem of the island, the main components of the
system, quantity and its rated power are summarized
in table 7:

Table 7: Hybrid Wind-Solar-Diesel-Battery System
Components

Type PV WT Diesel Lead-Acid
Battery

Power 180 W 30 kW 200 kW 2 V /1000 Ah
Quantity 556 7 1 480
Capacity 100 kW 210 kW 200 kW 960 kWh

The lead-acid battery array and photovoltaic array
are connected to a common 750 V DC bus; from this
point on, an inverter ties the 750 V DC bus to a 380 V
AC bus. The power from the wind turbines are con-
verted twice before beign delivered to the 380V AC
bus to which the diesel converter is directly tied. An
old diesel generator is also present in the system and
is used as a backup in case the new system fails. The
load, and seawater desalination plant are tied to the
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secondary of a 10 kV/380 V transformer, as shown in
figure 1:

Battery Array

Hybrid
PV Array

750V DC

380V AC

380V/10kV10kV/380V

10kV/380V

Hybrid
WT Array

Diesel Gen

Old Generator

Load

PEVs

Figure 1: Schematic Diagram of the Hybrid Wind-
Solar-Diesel-Battery System in the Dong-fushan Is-
land

The system implemented in the Dong-fushan is-
land operates using a master-slave strategy as pre-
sented in [21]. The battery array and the diesel gen-
erator serve as the master control unit alternatively
depending on the operating conditions of the system.
The operation strategy of the systems revolves around
the battery array state-of-charge (SOC). Initially the
battery array serves as the master unit. In this mo-
ment, the battery can be either charging, discharg-
ing, or in standby mode. This depends on the en-
ergy demand Pload and the generated power by the re-
newable resources Pren and Pexcess, which is the ex-
cess power generated from renewable resources that
allow the battery to be charged. This mode of op-
eration holds until the battery pack SOC falls below
its SOCmin. When this happens the diesel generator
becomes master unit and the battery starts to charge;
a battery SOC threshold SOCstp is defined so that,
when the battery SOC reaches this value, effectively
stops the diesel generator and the batteries become the
master unit again. When there is high availability of
renewable resources (such as wind or solar radiation)
the power generated from these resources is directly
used to meet the energy demand in real time and to
keep the power balance. In this moment, the battery
can be either charging or in standby mode depending
on the amount of energy generated. PEVs act as a load
to the system, the goal of the optimization problem in-
cluding electric vehicles is to achieve the lowest price
for the required energy to recharge the battery of the
vehicles. A time-of-use (TOU) approach is used in
order to determine the price of the energy required to
recharge the vehicle battery based on the time of the
day of connection and the duration of the re-charge
process.

3.2 The NSGA-II Genetic Algorithm

Genetic algorithms are a family of meta-heuristic and
multi-objective optimizations algorithms inspired by
the process of natural selection. Genetic algorithms
largely rely on bio-inspired operators such as muta-
tion, cross-over, and selection that act on a population
of candidate solutions to an optimization problem.

Many engineering optimization problems are
based on the process of minimizing a cost function
that can be constrained or un-constrained. Such opti-
mization problems are usually multi-objective, and as
such, a single global optimal solution is not feasible,
this is, the conflicting objectives may not be always
fully achieved individually, instead, the best trade-off
between this conflicting objectives is considered the
best solution to an optimization problem.

The Non-Dominated Sorting Genetic Algorithm
II (NSGA-II) was proposed in [33]. This algorithm
starts with a population of individuals that are candi-
date solutions in a search space. The population is
sorted into different levels of non-domination. Ini-
tially a population P of size N produces an offspring
population Q through genetic manipulation, that is,
crossover and mutation. The resulting population and
the original population are combined to produce popu-
lation R. From this point onwards, the algorithm may
be described by the following steps:

1. Population R is classified according to the
Pareto-rank mainly based on fitness criteria.
Small intensity and small Pareto-rank principles
are used to select individuals from this parent
population and the new parent population P ′

with size N is created.

2. From P ′ through genetic manipulation, generate
population Q′.

3. A new population R′ is generated from P ′ and
Q′.

4. These steps are repeated until the stop criteria
matches the specified condition.

The appropiate parameter combination for the ge-
netic algorithm will surely result in a faster conver-
gence to a solution. However, the general approach
to determine this combination of parameters generally
relies on trials of different combinations, for which
repetitiveness of the obtained solutions must be as-
sured.

Given the master-slave control strategy discussed
in section 2 for the system, the control variables are
defined to be SOCstp as the battery SOC threshold to
change the master control unit in the system, also as
a system constraint to keep the battery operating at a
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high SOC and extend its lifetime. Pexcess and Pcharge
are variables of decision, the objective is to find their
optimal values using the NSGA-II Algorithm. The op-
timization goals are defined to be the economic oper-
ation of the system and the extension of the battery
lifetime. The value of SOCmin is set at 0.6, SOCmax
is set at 0.95. The initial population size is set to be
200 and the generation number was set to be 20. The
costs of the energy to recharge the electric vehicles is
set based on the TOU costs. The following section,
presents the results obtained.

4 Results and Discussion

In this work, charging efficiency and other practical
factors are neglected. Figure 2 shows the renewable
resources availability (i.e. Wind Speed and Solar Ra-
diation). The power output from the wind turbines and
solar photovoltaic panels can be obtained using equa-
tions (11) and (29). The optimal set of values SOCstp,
Pexcess, and Pcharge are found through optimization
process for three different operation scenarios.
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Figure 2: Solar radiation and wind speed availability
throughout the day

Table 8: Optimized Values for Different Operating
Scenarios

No. SOCstp Pexcess Pcharge
1 0.8521 7.3473 61.3281
2 0.8613 34.6975 80.9329
3 0.9289 88.8963 84.5263

Table 8 summarizes the optimized values of
SOCstp, Pexcess, and Pcharge. The first operation sce-
nario minimizes the cost of energy generation. How-
ever, battery life loss increases because SOCstp is set

at a lower value meaning that the batteries are allowed
to operate in a lower SOC.

In this way the time of operation of the diesel
generator decreases and so does the energy price of
the system. Pexcess is set at 7.3473kW; this means
that the charging process of the batteries can be done
partly with renewables and, that most of the power
generated from renewable resources is used to meet
the energy demand of the system.
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Figure 3: Resource scheduling for lowest energy price

According to 3, starting in the early hours of the
planning horizon most of the energy demand is met
by a combination of energy from wind turbines and
batteries; this is also true for the aggregated energy
demand of the PEVs aggregator, shown in 4. A com-
bination of renewables and energy from batteries will
surely result in a cost of energy lower than the cost
from generating with the diesel generator. However,
the energy generated from wind alone is not enough to
meet the energy demand as it evolves along the plan-
ning horizon; this forces the battery to discharge to the
SOCstp value, that is fixed at a lower value. The latter
of course results in a greater loss of battery life and an
increased cost of investment in replacing the battery
given its premature exhaustion.

The energy demand rise forces the diesel genera-
tor to start operating as the aggregated power gener-
ation from renewables is not enough to meet the en-
ergy demand. In this case, most of the energy gener-
ated with the diesel generator is sent to the battery to
recharge it, and the demand is met with a combination
of diesel generation and renewables, This combina-
tion is the least favorable form the energy costs point
of view, this is why in this operation scheme the PEVs
do not charge.

Lastly, when solar power becomes available
the combined wind-solar-battery energy generation
scheme meets the energy demand. This is not the
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Figure 4: Coordinated charge strategy for the lowest
energy price

optimal operation scenario as the battery is operating
constantly and switching its operational state, thereby,
contributing to its lifetime loss.

The operation scheme No. 2 shown in figures
5 and 6 (Coordinated PEVs Charge), SOCstp is set
higher. This means that the diesel generator will have
to generate more power before the batteries become
master in the system. It also means that the energy
price will increase in relation to the previous operating
scenario given required additional diesel generation to
charge the batteries to their new SOCstp. However,
an increased SOCstp will result in a reduction in life
loss of the battery. Pexcess is set at 34.6975 kW this
way, more power generated from renewable sources is
used to charge the batteries but also to meet the energy
demand of the system.
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Figure 5: Resource scheduling for balanced energy
price and battery lifetime loss reduction

The early hours of operation in the planning hori-
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Figure 6: Coordinated charge strategy for balanced
energy price and battery lifetime loss reduction

zon are almost the same as in the previous operation
scenario. However, the diesel generation is higher, re-
sulting in slightly higher energy prices. As the system
operates along the planning horizon solar power be-
comes available and help reduce the energy required
from the battery, reducing the switching of the battery
between states and helping extend its lifetime. In this
operation scenario the charging strategy of PEVs de-
mands most of the energy during the hours of lower
demand. This helps decrease load peaks and also re-
sults in a reduced energy price for the system aggre-
gator.
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Figure 7: Resource scheduling for best battery life

In the last operation scenario the reduction in bat-
tery usage is evident (figures 7 and 8). Most of the
energy demand is met with a combination of renew-
able resources and diesel generation. This, of course
is a less favorable operation strategy considering en-
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ergy price. However, it guarantees an extended life-
time of the battery. PEVs are charged in a way simi-
lar to that in the other operation strategies however as
more power from renewables is available during more
time, the PEVs demand is extendend. In this way a
higher SOC for each PEV can be achieved at a low
energy price for the system aggregator.
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Figure 8: Coordinated charge strategy for best battery
life

5 Conclusion

This study present a operation planning tool for
micro-grids. In order to show the practical benefits
of employing the propose tool, this paper presents the
operation optimization of an isolated micro-grid in the
Dong-fushan island in China. The major contribution
of the work is the optimization of a set of parameters
that rule the the micro-grid energy allocation during a
planning horizon of 24 hours. A seamless integration
of renewable energy sources is achieved by means of
uncertainity costs functions. To meet the energy de-
mand in the most economic way possible, both, from
the energy price point of view and also from the bat-
tery lifetime extension point of view a combination
of generation resources was devised using the Non-
Dominated Sorting Genetic Algorithm - II (NSGA-
II) for the planning horizon resulting in the lowest
energy price and also the lowest loss of battery life-
time. Controllable loads like PEVs are used advanta-
geously to respond to the energy demand throughout
the planning horizon, this allows the energy demand
to be modified by moving the aggregated demand of
the PEVs to periods of generation were the energy
price is lower. The main advantage of this approach,
by employing the proposed strategy network, is that
operators have a tool that allow them to integrate re-

newables in their energy dispatch and also to assign
a price for the energy generated with such resources
while simultaneously reducing the use of energy stor-
age elements, and its consequent loss of lifetime.

Acknowledgment

The authors would like to thank the Cyted Network:
RED IBEROAMERICANA PARA EL DESAR-
ROLLO Y LA INTEGRACION DE PEQUEÑOS
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